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SUMMARY 
The Standardized Precipitation Index (SPI) is used throughout the world as a meteorological drought index to identify the 

duration and/or severity of drought. Early forecasting of drought is a critical issue to mitigate the adverse effects of drought of 
varying intensities. To address this issue, linear stochastic models, such as ARIMA and SRIMA have been used in this study. We 
studied ARIMA and SARIMA models to identify the most appropriate model to describe the SPI series at 3, 6, 9, 12 and 24 month 
time scale for the Ballary region in Southern India. Temporal characteristics of droughts based on SPI as an indicator of drought 
severity indicated that the region has been affected by a prolonged drought during the study period (1968–2012). Our study 
followed ARIMA calibration approach using time series data of SPI series for drought forecasting. The best model among different 
data sets has been identified using minimum Akaike Information Criteria (AIC), Schwarz-Bayesian Information Criteria (SBC) 
criteria along with the independency and normality criteria of the residuals. For 3-month SPI series ARIMA was observed to be 
appropriate while SARIMA model series is promising for the remaining SPI series. The stochastic models developed to predict 
drought were observed to give reasonably good results with 3 month lead time. Since drought prediction plays an important role in 
conservation of water resources, water storage management and mitigating drought severity, stochastic models has been observed to 
be the best and is recommended for drought forecasting in this region of India.  

Keywords: Auto regressive integrated moving average, Drought forecasting, Linear stochastic model, Seasonal auto regressive 
integrated moving average, Southern India, Standardized precipitation index. 

1.  INTRODUCTION 
Rising global temperatures are predicted to lead 
to an intensification of the hydrological cycle, 
resulting in dryer dry seasons and wetter rainy 
seasons, and subsequently heightened risks of 
more extreme, longer and frequent floods and 
droughts (IPCC, 2008, Jana et al. 2015). India 
has experienced changes in climate variability 
and extremes of weather and climate events in 
the recent years. Drought affects the natural 

environment of an area when it persists for a 
longer period.1Research has shown that the lack 
of a precise and2objective definition in specific 
situations has been an2obstacle in understanding 
drought which has led to indecision and inaction 
on the part of land managers and policy-makers 
(Alam et al. 2012, Alam et al. 2014, Alam et al. 
2015a, Alam et al. 2015b, Wilhite et al. 1985, 
Wilhite et al. 1986, Mishra et al. 2011). 
Comprehensive planning for developing optimal 
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strategies to deal with drought situations is 
becoming an increasingly important subject of 
concern for researchers and water resource 
managers in order to protect the affected 
community from drought. Drought has a direct 
impact on water resources management, thus 
water resource decision makers must be prepared 
to anticipate such situations and accept the 
challenges and complications that are involved in 
dealing with drought related problems. 
Monitoring of drought implies the ability to 
assess the current conditions and predict future 
drought occurrence, which is the key for 
developing any water resource management plan 
during drought periods.  

To identify drought, several indices has been 
developed earlier (Mishra and Singh 2010). 
Some of the widely used drought indices are the 
Palmer Drought Severity Index (PDSI), 
Reconnaissance Drought Index (RDI), 
Standardized Precipitation Index (SPI), 
Standardized Precipitation Evapo-transpiration 
Index (SPEI), Surface Water Supply Index 
(SWSI) etc. of which Standardized Precipitation 
Index (SPI) (McKee et al. 1993) has been used 
widely because of relatively higher prediction 
accuracy (Guttman 1998). Drought forecasting 
plays an important role in the mitigation of the 
impact of drought on water resources. While 
many methods and approaches for formulating 
forecasting models are available in literature, this 
paper exclusively deals with time series 
forecasting models, in particular, the seasonal 
and non-seasonal Auto Regressive Integrated 
Moving Average (ARIMA) (Box et al. 1994). 
They have been successfully applied in various 
water and environmental management 
applications and are the most widely used 
stochastic models for the purpose of drought 
forecasting (Alam et al. 2014a, Durdu 2010, 
Haan 2002, Mishra and Desai 2005, Mishra et al. 
2007). 

The impacts of drought in the low and 
variable rainfall region are widespread, affecting 
diverse sectors as agriculture, irrigation, and 
energy and can be classified as short term and 

long term. The consequence of drought in the 
short run adversely affects food grain production 
which can lead to drop in employment and 
income, and in the long run, it leads to distress 
sale of assets and out migration of affected 
households. Another short–term effect of drought 
is decline in food stock-it leads to increase in 
food grain prices, and thus, there is reduction in 
the intake of food, and in the long run, it affects 
the health of people and leads to starvation 
(Patnaik 2010). 

India is one of the most vulnerable countries 
to climate change (FAO 2002) and is considered 
as one of the most drought-prone countries in the 
world (Shetty et al. 2013). Within the country, 
the rainfed areas, which constitute 55 per cent of 
the net sown area and support two-thirds of 
livestock and 40 percent of the human population 
of the country is assumed to be the most 
vulnerable to climate change. The options to take 
care of variability in rainfall (timing and 
duration) are also limited (Rao et al. 2011). 
Moreover, farmers in the these regions are 
acutely vulnerable to climate variability and 
change due to their limited natural and financial 
resources coupled with poor infrastructure, 
institutional support, and governance (World 
Bank 2008). Among different farm categories, 
expectedly smallholder farmers, mostly poor, are 
highly vulnerable, who are highly dependent on 
agriculture and on natural resources, for their 
livelihood (Conway 2008). It will therefore be 
prudent to develop a methodology that will 
predict the occurrence of a meteorological 
drought in the drought prone areas, so that 
suitable contingency measures are employed to 
reduce the impact. 

The study was undertaken in the Ballary 
region of India which falls under the category of 
an arid region (aridity ratio 0.05-0.20). This region 
is characterized by an average annual rainfall < 
500 mm, with 16% of net sown area (Alam et al. 
204b, Patnaik 2010, Alam et al. 2015b) and was 
declared to be affected by metrological drought 4 
times in every 10 years (Ministry of Agriculture/ 
Drought Management 2008). 
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Alam et al. (2014) and Durdu (2010) reported 
drought forecasting up to two months in advance 
using ARIMA model for the Bundelkhand region 
in central India and Buyuk Menderes river basin 
in semi-arid climatic condition of western 
Turkey, respectively. Our hypothesis is that 
simple linear stochastic models can be useful in 
predicting the occurrence of drought with a 
sufficient time advantage. No systematic study 
has been conducted on the application of 
stochastic models to forecast drought for the 
sem-arid tracts in India, which is historically 
known to be a drought prone region. The present 
investigation was undertaken with the objective 
to use linear stochastic model (ARIMA) as a 
potential tool for drought forecasting which will 
be useful for implementing appropriate drought 
mitigation strategies in areas susceptible to 
frequent droughts of moderate intensities. 

2. MATERIALS AND METHODS 
2.1 Dataset 

 
Fig. 1. Distribution of monthly rainfall for Bellary region of India, 

vertical bars represents upper and lower limit while box 
represents 75th and 25th percentile and dot represents 

mean value (Alam et al. 2015) 

The daily rainfall (mm) data of the Ballary 
region was collected for 45 years and 3 months 
(Jan, 1968–March, 2013) from a Class A 
meteorological observatory located at the Indian 
Institute of Soil and Water Conservation, 
Research Centre, Bellary, Karnataka, India which 
is situated at an elevation of 580 AMSL (15015' 

N Lat. and 76093' E Long.). This region falls in 
the southern part of Karnataka, which is the 9th 
largest state in India, covering an area of 191976 
sq.km, but has the 2nd largest arid zone after the 
state of Rajasthanin India. The distribution of 
monthly rainfall for the region has been shown in  
Fig. 1 (Alam et al. 2015b). 

The Standardized Precipitation Index (SPI) 
The Standardized Precipitation Index (SPI) is 

a tool, which was primarily developed to identify 
meteorological drought and wet events by using 
only series of monthly rainfall (McKee et al. 
1993). Mathematically, the standardized 
precipitation index is simply the difference of 
precipitation from the mean for a specified time 
period divided by the standard deviation, where 
the mean and standard deviation are determined 
by past records. The computation of SPI becomes 
complicated, when the SPI is normalized so as to 
reflect the variable behaviour of precipitation for 
time steps shorter than 12 months (Shahid and 
Hazarika 2010). To overcome this problem, the 
long-term precipitation records of a station are 
fitted to a gamma distribution, since the gamma 
distribution has been observed to adjust to the 
precipitation distribution quite well. This is done 
through a process of maximum likelihood 
estimation of the gamma distribution parameters, 
α and β. Then, the cumulative probability of an 
observed precipitation event for each time scale 
of interest is deduced. The cumulative 
distribution is transformed to a normal 
distribution with a mean of zero and standard 
deviation of one, since the probability 
distribution is determined by fitting an 
incomplete gamma distribution to the data, which 
is the value of the SPI. 

In simple terms, SPI is a normalized index 
representing the probability of occurrence of an 
observed rainfall amount when compared with 
the rainfall climatology at a certain geographical 
location over a long-term reference period. 
Negative SPI values represent rainfall deficit, 
whereas positive SPI values indicate rainfall 
surplus. Intensity of drought event can be 
classified according to the magnitude of negative 
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SPI values such that larger the negative SPI 
values are, the more serious the event would be. 
For example, −0.99 ≤ SPI ≤ 0 is classified as 
mild drought, −1.49 ≤ SPI ≤ −1.00 and −1.99 ≤ 
SPI ≤−1.5 are classified as moderate and severe 
drought respectively, whereas negative SPI 
values greater than or equal to 2 are classified as 
extremely dry conditions. SPI enables rainfall 
conditions to be quantified over different time 
scales (e.g. 3-, 6-, 9-, 12-, or 24-month rainfall), 
facilitating the analyses of drought impact on 
various water resource needs. A 3-month SPI 
reflects short- and medium-term moisture 
conditions and provides a seasonal estimation of 
precipitation. In agricultural regions, a 3-month 
SPI might be more applicable in highlighting 
available moisture conditions. A 6-month SPI 
indicates medium-term trends in precipitation 
and is considered to be more sensitive to 
conditions at this scale than the Palmer Index. A 
9-month SPI provides an indication of 
precipitation patterns over a medium time scale. 
SPI values below -1.5 for these time scales are 
usually a good indicator which reflects 
significant adverse impacts in agriculture and is 
applicable in other sectors as well. A 12-month 
SPI reflects long-term precipitation patterns and 
is related to stream flows, reservoir levels, and 
even groundwater levels at the longer time scales. 
In some locations the 12 month SPI is most 
closely related with the Palmer Index, and the 
two indices reflect similar conditions. A 24-
month SPI explains long-term drought in a given 
area. 

2.2 ARIMA Model 
One of the most widely used time series 

models is the ARIMA model. In early 1970’s, 
Box and Jenkins pioneered in evolving 
methodologies for time series modelling in the 
univariate series often referred to as Univariate 
Box-Jenkins (UBJ) ARIMA modelling. The 
acronym ARIMA stands for "Auto-Regressive 
Integrated Moving Average”. Lags of the 
differenced series appearing in the forecasting 
equation are called "auto-regressive" terms, lags 
of the forecast errors are called "moving average" 

terms and a time series which needs to be 
differenced to be made stationary is said to be an 
"integrated" version of a stationary series 
(Ghafoor and Hanif 2005). Random-walk and 
random-trend models, autoregressive models and 
exponential smoothing models (i.e., exponential 
weighted moving averages) are all special cases 
of ARIMA models.  

In general, a non-seasonal ARIMA model is 
characterized by the notation ARIMA (p, d, q), 
where ‘p’ is the number of autoregressive terms, 
‘d’ is the number of non-seasonal differences and 
‘q’ is the number of lagged forecast errors in the 
prediction equation. In ARIMA parlance, TS is a 
linear function of past actual values and random 
shocks. For instance, given a time series process 
(Yt), a first order auto-regressive process is 
denoted by ARIMA (1,0,0) or simply AR (1) and 
is given by: 

Yt = μ + φ1*Yt-1 + εt (1) 

where the auto regressive coefficient is denoted 
by φ. 

A first order moving average process is 
denoted by ARIMA (0,0,1) or simply MA(1) is 
given by:  

Yt = μ - θ1 *εt-1 + εt (2) 
where θ, the coefficient of the lagged forecast error. 

Alternatively, the model ultimately derived, 
may be a mixture of these processes and of 
higher orders as well. Thus a stationary ARIMA 
(p, d,q) process is defined by the equation:  

1 1 2 2

1 1 2 2

t t t p t p

t t q t q t

y y y y  

      
  

  

  

   
 (3) 

where εt’s are independently and normally 
distributed with zero mean and constant variance 
σ2 for t = 1, 2,…,n. 

Seasonal ARIMA (SARIMA) model 
The ARIMA process can be extended to 

include seasonal terms, giving a non-stationary 
seasonal ARIMA (SARIMA) process. Seasonal 
ARIMA models are powerful tools in the 
analysis of time series as they are capable of 
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modelling a very wide range of series. 
Identification of relevant models and inclusion of 
suitable seasonal variables are necessary for 
seasonal analysis. SARIMA model is 
characterized by the notation SARIMA (p, d, q) 
(P, D, Q)s model, as reported in Shumway and 
Stoffer (2000), is defined by: 

൫1 − ߶ଵܤ − ߶ଵܤଶ −⋯ .−߶௣ܤ௣൯ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
஺ோ(௣)

 

(1− ଵܵ௦ߚ − ଶܵଶ௦ߚ −⋯− ௉ܵ௉௦)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥߚ
஺ோೞ(௉)

 

(1− ௗᇣᇧᇧᇤᇧᇧᇥ(ܤ
ூ(ௗ)

(1− ௧ݕ௦)஽ᇣᇧᇧᇤᇧᇧᇥܤ
ூೞ(஽)

  (4) 

= ܿ + ൫1− ߰ଵܤ − ߰ଵܤଶ −⋯− ߰௣ܤ௣൯ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ெ஺(௤)

 

(1 − ଵܵ௦ߠ − ଶ௦ܵߠ −⋯− ௉ܵ௉௦)ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥߠ
ெ஺ೞ(ொ)

 ௧ߝ

where, 

AR(p) Autoregressive part of order p, 

MA(q) Moving average part of order q, 

I (d) differencing of order d, 

ARs (P) Seasonal Autoregressive part of 
order P, 

MAs (Q) Seasonal Moving average part of 
order Q, 

Is (D) seasonal differencing of order D, 

s is the period of the seasonal pattern 
appearing, 

B is the backshift operator (i.e. B yt= yt-1, B2yt 
= yt-2 and so on), 
The SPI series of different time scale was 

fitted using time series modelling approach 
which involves the following steps: model 
identification, parameter estimation, and 
diagnostic checking (Alam 2014a, Guttman 
1998, Durdu 2010, Mishra and Desai 2005, 
Modarres 2007). The data set from 1968 to 2005 
was used for model building for all the five SPI 
series. 

2.3 Diagnostics of ARIMA and SARIMA 
Model  
Different models can be obtained for various 

combinations of AR and MA individually and 
collectively (Khattree 2003). The best model is 
obtained with the following diagnostics: 

2.3.1 Low Akaike Information Criteria 
(AIC)/ Bayesian Information Criteria 
(BIC)/ Schwarz-Bayesian Information 
Criteria (SBC) 

AIC is given by AIC = (-2 log L + 2 m) 
where m = p + q + P + Q and L is the likelihood 
function. Since -2 log L is approximately equal to 
{n (1+log 2π) + n log σ2} where σ2 is the model 
MSE, and AIC can be written as AIC= {n (1+log 
2π) + n log σ2 +2m} and because the first term in 
this equation is a constant, it is usually omitted 
while comparing between models. As an 
alternative to AIC, sometimes SBC is also used 
which is given by SBC = log σ2 + (m log n) /n. 

2.3.2 Plot of Residual’s ACF 

Once the appropriate ARIMA model has been 
fitted, one can examine the goodness of fit by 
means of plotting the ACF of the residuals of the 
fitted model. If most of the sample 
autocorrelation coefficients of the residuals are 
within the limits of ±1.96√N where, N is the 
number of observations upon which the model is 
based then the residuals are white noise 
indicating that the model is good. 

2.3.3 Non-significant Autocorrelations of 
Residuals 

To check the independence of the residuals 
i.e., to test the null hypothesis that a current set of 
autocorrelations is white noise, Ljung-Bix-Pierce 
statistic (Q) which is a function of 
autocorrelations of residuals is given by: 

ܳ = ݊(݊ + 2)∑ (݆)ଶݎ (݊ − ݆)⁄௞
௝ୀଵ  (5) 

The Q statistic is compared to critical values 
from chi-square distribution. A significant value 
of Q indicates that the chosen model does not fit 
well. 
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The model having been identified and the 
parameters estimated, diagnostic checks are then 
applied to the fitted model to verify that the 
model is adequate. Several tests are employed for 
diagnostic check that consists of tests viz. 
Portmantateau Lack-of-fit Test and Anduson-
Darling Goodness of Fit Test for Normality. 

2.3.4 Portmantateau Lack-of-fit Test to 
Check the Independence of Residuals 

Portmantateau lack-of-fit test is modified 
Ljung–Box–Pierce statistics proposed by Ljung 
and Box (Ljung and Box 1978) employed to 
check the independence of residuals. In order to 
test the null hypothesis that a current set of 
autocorrelations is white noise, test statistics are 
calculated for different total numbers of 
successive lagged autocorrelations using the 
Ljung–Box–Pierce corrected statistics (Q*(r) 
test) to test the adequacy of the model. The Q*(r) 
statistic is formulated as follows (Durdu 2010). 

   2
*

1
2 L k

k

r
Q n n

n k



 

   (6) 

where L is the total number of lagged 
autocorrelations under investigation, rk is the 
sample, and autocorrelation of the residuals at lag 
k. Q*(r) values are compared to a critical test 
value of χ2 distribution with respective degree of 
freedom at a 5% and significant level, n is total 
observation. 

2.3.5 Anderson-Darling Goodness of Fit Test 
for Normality 

In present study Anderson-Darling (AD) test 
is used for goodness of fit for testing the 
normality with 5% level of significance. The test 
statistics of AD test is defined as 

  2
1

1

1 2 1 ln ln (

ln{1 ( )}]

n
ii

n i

A n i F X
n

F X


 

   

 

  (7) 

where n is the number of observations and F(X) 
is the Cumulative Density Function (CDF) for 
the data. For a chosen significance level α, if A2 
is greater than the critical value Dtab, the null 
hypothesis related to normality is rejected for the 
chosen level of significance. 

Also, basic statistical properties are compared 
between observed and forecasted data using  
Z-test for the means and F-test for standard 
deviation (Haan 1977). Since Zcal values related 
to means were between Z critical table values 
(±1.96 for two tailed at a 5% significance level) 
and similarly, the Fcal values of standard 
deviation were smaller than the Fcritical values at 
a 5% significant level. 

Detail description of ARIMA models can be 
referred in Box et al. (1994). A number of 
computer programs are available to compute 
predictions. In the present study ARIMA of 
SAS/ETS was used to estimate models using 
SAS 9.3 software. 

3. RESULTS AND DISCUSSION 
3.1 Drought Characteristics in the Region 

The SPI has been calculated for 45 years at 
five different time scalesviz. 3-month, 6-month, 
9-month, 12-month and 24-month to quantify 
both short as well as long term drought. The SPI 
series of the region for different timescales are 
shown in Fig. 2, from which it is clear that the 
region experiences both severe and extreme 
drought at all-time scales and period of drought 
increases with increase with the higher SPI time 
scale. From SPI at 3-month time scale it is clear 
that region experienced short term drought in all 
the months except February and March (Table 1) 
where SPI-3 values were positive i.e. non-
drought. Annual minimum SPI-3 shows that in 
Bellary region it was -3.34 during May 2003. The 
frequency analysis of occurrence of annual 
minimum SPI at higher time scale viz. SPI-6, 
SPI-9, SPI-12 and SPI-24 showed that the region 
experiences moderate and severe drought for all 
the months of the year (Table 1). From the time 
series of monthly SPI series, it is clear that the 
region experienced frequent droughts and several 
severe and extreme drought events were detected 
at multiple time scale during the period under 
study Alam et al. (2015b). A minimum SPI at  
6-month time scale for the region was observed 
in May, 2003 (-2.63). An extreme drought with 
lowest 9-month time scale SPI (-2.75) was 
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observed in September 1995 for the region. In the 
region, minimum 12-month and 24-month SPI 
were observed during October, 1985 and July, 
1986 with a drought magnitude of -2.52 and -
2.48, respectively. Similar results have been 
observed by the studies in the Buyuk Menderes 
river basin, western Turkey by Durdu (2010) and 
for Bundelkhand region in central India by Alam  
et al. (2012) and Alam et al. (2014). 

 

 

 
Fig. 2. SPI at different time scale (a, b, c, d, and e) based on 

monthly rainfall in bellary region 

Table 1. Frequency percentage of occurrence of moderate and 
severe drought at different SPI 

Month SPI 3 SPI 6 SPI 9 SPI 12 SPI 24 
Jan 10.70 7.20 8.50 6.60 8.30 
Feb 0 7.20 7.30 6.60 8.30 
Mar 0 8.40 9.80 7.90 8.30 
Apr 9.30 9.60 7.30 7.90 8.30 
May 10.70 6.00 8.50 10.50 8.30 
Jun 10.70 10.80 9.80 10.50 9.70 
Jul 13.30 9.60 7.30 9.20 8.30 
Aug 12.00 9.60 8.50 7.90 6.90 
Sep 8.00 9.60 8.50 9.20 8.30 
Oct 10.70 8.40 8.50 7.90 8.30 
Nov 5.30 6.00 7.30 7.90 8.30 
Dec 9.30 7.20 8.50 7.90 8.30 

3.2 Model Calibration 
For model calibration SPI series for the 

period 1968- 2005 was taken for SPI-3, -6, -9 and 
-12 while 1968-2001 was taken for SPI-24 series. 
Stationarity of these SPI series have been 
checked using Dickey Fuller test. Dickey Fuller 
statistic and corresponding probability level for 
SPI-3, 6, 9, 12 and 24 series were -7.37 (p 
<0.01), -7.63 (p <0.01), -7.68 (p <0.01), -5.66 (p 
<0.01) and -3.84 (<0.02), respectively. Since all 
the test statistic are significant at 5% level of 
significance, we can conclude that all the five 
SPI series are stationary and does not need 
differencing. One of the main reasons of being 
stationary is that SPI values are standardized 
values. After checking the stationarity of the 
series, identification of best model has been 
carried out. The identification of best model for 
the different SPI series based on minimum AIC 
and SBC criteria is demonstrated in Table 2, 
which indicates that other than SPI-3, all series 
performed well in SARIMA model. SPI–3 
performs best under MA (2) model i.e. the 
stochastic model for SPI 3 is ݕ௧ = ௧ିଵߝଵߠ +
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௧ିଶߝଶߠ +  ௧, which indicates for SPI 3 series theߝ
stochastic model is weighted moving average 
over past errors. Lowest AIC and SBC value of 
1012.06 and 1024.33 respectively, has been 
obtained among the other candidate models for 
MA (2) series of SPI 3. For all other SPI series, 
as the seasonal patterns are strong and consistent, 
seasonal ARIMA models has performed well. 
For SPI-6 series as the auto-correlation at the 
seasonal period is significantly positive at lag 1, 
we obtained best model as SARIMA (1, 0, 0)(1, 
0, 0)6 with AIC and SBC values as 809.13 and 
821.38 respectively. For SPI-9 and SPI-12 series 
the seasonal autocorrelation is significantly 
negative we obtained best fitted model as 
SARIMA (1, 0, 0)(0, 0, 1)9 and SARIMA (1, 0, 
0)(0, 0, 1)12 respectively. SARIMA (1, 0, 0)(1, 
0, 2)24 outperformed all the other candidate 
models for SPI 24 series with minimum AIC and 
SBC value of 30.45 and 10.24 for SPI 24 series 
(Table 2). 

Table 2. Best selected ARIMA and SARIMA model based on 
minimum AIC and SBC criterion 

SPI 
Series 

Model AIC SBC Adj R 
Square 

0SPI 30 MA (2) 1012.06 1024.33 0.61 
0SPI 60 SARIMA (1, 0, 0) 

(1, 0, 0)6 
809.13 821.38 0.64 

0SPI 9 SARIMA (1, 0, 0) 
(0, 0, 1)9 

597.66 609.89 0.77 

SPI 12 SARIMA (1, 0, 0) 
(0, 0, 1)12 

243.65 255.86 0.78 

SPI 24 SARIMA (1, 0, 0) 
(1, 0, 2)24 

30.45 10.24 0.94 

The parameters estimates with associated 
standard errors, t-ratio and probabilities for the 
standard errors for the best fitted ARIMA and 
seasonal ARIMA model are listed in Table 3. For 
all the SPI series, stochastic model with no-
intercept was found to be the best. Results also 
indicate that in comparison to the parameter 
values, the standard errors estimated for the 
model parameters are small. As most of the 
parameters are significant at 5% level of 
significance, associated parameters can be judged 
as significantly different from zero (Alam 2014, 
Durdu 2010, Mishra and Desai 2005). This 
indicates that the estimates of parameters are 

statistically significant and these parameters 
should be included in the models. 

Table 3. Parameter estimates for best ARIMA 
and SARIMA models 

SPI 
Series 

Model 
Parameters 

Parameter 
Estimates 

Standard 
Error 

t-ratio Prob>|t| 

SPI 3 θ1 -0.655 0.042 -15.54 < 0.001 
θ2 -0.517 0.040 -12.93 < 0.001 

SPI 6 φ1 0.818 0.028 29.46 < 0.001 
Φ1 -0.294 0.046 -6.37 < 0.001 

SPI 9 φ1 0.887 0.022 39.75 < 0.001 
Θ1 0.458 0.044 10.31 < 0.001 

SPI 
12 

φ1 0.956 0.015 65.32 < 0.001 
Φ1 0.761 0.037 20.40 < 0.001 

SPI 
24 

φ1 0.968 0.013 0.7409 < 0.001 
Φ1 -0.893 0.118 -7.55 < 0.001 
Θ1 -0.159 0.144 -1.10 < 0.027 
Θ2 0.769 0.109 7.08 < 0.001 

3.3 Model Validation 
After selecting the best time series model, the 

model was validated using the SPI series for the 
period 2005 to 2012for the SPI3, SPI6, SPI 9 and 
SPI 12 while for the SPI 24 series data set from 
2001 to 2012was used. Fig. 3 describes the close 
fit between the observed and predicted data using 
the selected best ARIMA/SARIMA models for 
the entire time series for the region. It was 
observed that the predicted data and observed 
data have similar characteristics in terms of the 
SPI series. The residuals of the validated series 
was tested to check whether they are 
independently and normally distributed. 
Portmantateau lack-of-fit test was done as a 
check of independence of the residuals. Testing 
normality of residuals by Anderson Darling (AD) 
goodness of fit test indicated that residuals for all 
the SPI series follow normal distribution as the 
test statistic was non-significant (Sharda and Das 
2005). The test statistic along with probability 
level for Portmantateau lack-of-fit test and 
Anderson Darling test have been presented in 
Table 4 to describe validity (independent and 
normally distributed) of the residual of the 
models which is a statistical prerequisite for 
model validation. Portmantateau test shows that 
the calculated value is less than the actual χ2 

value, which signifies that the present models are 
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adequate on the available data. Since all the SPI 
series test statistic AD test are non-significant 
(p<0.05) which indicates that residuals are 
normally distributed. 

Table 4. Test for normality and independence of residuals 

SPI Series Test for Independence Test for Normality 
Portmantateau Test Anderson Darling Test 

Q(r) df Probability A2 Probability 
0SPI 3 11.86 10 0.156 0.601 0.863 
0SPI 6 8.90 7 0.089 0.688 0.730 
0SPI 9 1.40 9 0.514 0.612 0.848 
SPI 12 5.48 7 0.073 1.165 0.133 
SPI 24 0.073 6 0.830 1.94 0.051 

 
Fig. 3. Comparison of observed and predicted SPI data at 

different time scale (a, b, c, d and e) using the Best ARIMA 
models for bellary region, india 

3.4 Drought Forecasting using ARIMA Model 
We proceeded with the validation of model as 

per the flow chart following standard procedure. 
The one, two and three-step-ahead forecasting 
have been done using the best fitted ARIMA 
model for January, 2013 to March, 2013. The 
observed and forecasted series at different lead 
time is presented in Table 5. The basic statistical 
properties are compared between observed and 
forecasted data for 3 month lead time using 
ARIMA approach, based on t-test for the mean 
and F-test for the standard deviation (Table 6). 
Since tcal values were found to be lower than  
t-critical table value for two tailed at a 5% level 
of significance level, it can be concluded that 
there is no significant difference between 
observed and forecasted values. Similarly the Fcal 
values of standard deviation were smaller than 
the F critical values at a 5% significance level. 
Thus, the results showed that forecasted data 
follow the basic statistical properties of the 
observed series. Results of Table 5 and 6 indicate  
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Table 5. Observed and forecasted data up to 3 month lead time using the best ARIMA/ SARIMA model 

SPI Series Lead Period Observed SPI Forecasted SPI 
SPI 3 Jan-2013 -1.338 -0.899 

Feb-2013 1.647 0.716 
Mar-2013 0.646 0.509 

SPI 6 Jan-2013 -0.736 -0.733 
Feb-2013 -0.960 -0.409 
Mar-2013 -1.512 -1.063 

SPI 9 Jan-2013 -0.918 -1.059 
Feb-2013 -1.041 -0.815 
Mar-2013 -1.040 -1.133 

SPI 12 Jan-2013 -0.705 -0.321 
Feb-2013 -1.117 -0.864 
Mar-2013 -1.119 -1.139 

SPI 24 Jan-2013 -0.071 -0.032 
Feb-2013 -0.274 -0.171 
Mar-2013 -0.291 -0.267 

Table 6. Statistics result for 1 to 3 month lead time of all SPI Series using ARIMA model 

SPI Series Mean 
Observed 

Mean 
Forecasted 

Probability Variance 
Observed 

Variance 
Forecasted 

Probability MPE 

SPI 3 -0.556 -0.142 0.288 0.263 0.081 0.236 36.85 
SPI 6 -0.288 -0.267 0.953 0.323 0.024 0.069 29.17 
SPI 9 -0.163 -0.365 0.652 0.284 0.230 0.446 -0.86 
SPI 12 0.123 0.093 0.469 0.0003 0.004 0.066 25.11 
SPI 24 -0.212 -0.157 0.093 0.0003 0.001 0.052 33.59 

MPE=Mean percentage error(%) 

that ARIMA1model can predict meteorological 
drought using SPI as drought indicator 3-month 
in advance with1reasonable accuracy so it can  
be considered as1the best analytical tools for 
drought1forecasting. Similar results have also 
been reported1by Alam et al. (2004a) and Durdu 
(2010). 

4. CONCLUSION 
This study indicates that the SPI is a valuable 

tool for quantifying meteorological drought at 
different scale and is able to detect different level 
of severities. Linear stochastic models (ARIMA) 
successfully demonstrated drought forecasting 
for Bellary region and proved that it is one of the 
worst affected drought prone regions of India. 
Temporal characteristics of the droughts 
indicated that the region experienced frequent 
moderate and severe droughts (i.e. SPI <-1) for 
almost all the months of the year. The stochastic 
models developed to predict drought were found 
to give reasonably good result up to 3 month in 
advance. Linear stochastic models can be used 
for the aridregions for predicting SPI time series 

of multiple time scale to detect the drought 
severity in future which is useful information for 
the local administration and water resource 
planners to take safety measures considering the 
severity of drought well in advance. The results 
of this study suggest that the linear stochastic 
models can be used for other hydro-
meteorologically similar watersheds or regions 
for predicting SPI time series of multiple time 
scales to detect drought severity in future. The 
stochastic models validated for the region can be 
employed for the development of drought 
mitigation to ensure sustainable water resources 
management in the region and elsewhere. Model 
validation studies however also indicated that 
database from more number of sites is required to 
come into a meaningful interpretation. 
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